Aspect-Oriented Tool For Memory And
Performance Profiling

Ankit Agarwal', Shivanjali Kamble!
Indian Institute of Technology Rajasthan, India
Email: ankitgenius90@ gmail.com, ksshivanjali@ gmail.com

Abstract—With the motivation of improving the
performance of softwares, we are presenting an
Aspect-Oriented profiling tool, termed as Aspect-
Trace, which can profile any C code. Accurate,
efficient and dynamic profiling tools are needed
to study the program execution behaviour. This
information is then used by the programmers and
developers to optimize the programs. We have
proposed and implemented a new tool AspectTrace,
a profiler and memory-leaks detector, that per-
forms dynamic program analysis. It consists of a
loadable kernel module, which extracts the kernel
level information as per instructed by automatic
generated aspects. The proposed aspect-oriented
approach used for profiling is different than the
present approaches (statistical, virtual machine)
used by existing profilers. The aim of this approach
is to produce streamlined profiler code, fine-grained
profiling, less runtime overhead, architecture inde-
pendence, user-friendliness and ease to use.

[. INTRODUCTION

From the very first day when operating systems
were developed, performance improvement has
always been a concern. Amdahl’s law indicates
that in order to write fast and efficient program,
programmers must target the most expensive part
of their code[l]. The significant part is the de-
tailed study of the behavior of a program which
can help to figure out the pinpointed sections of
the code which should be optimized. Profiling
is a standard method to investigate and tune the
performance of any code. A naive and most pop-
ular way of profiling is to manually edit several
statements so that the time-stamp will be printed
when the thread of control reaches one of those
statements. But the major drawback of the manual
editing is that it is error-prone. Moreover, the

'Student Authors

analysis of the large code with manual editing is
a cumbersome task. Profilers are the tools which
help in profiling the code. They are developed
mainly to figure out which part of the code
consumes the major portion of the execution time
and the part of the code where memory leaks
occur. Different kind of profiling tools have been
developed till date. Some work at the user level
and some at the kernel level. For kernel level
profiling, there are various profilers available but
they are not able to do fine-grained profiling, have
high CPU overhead, provide limited information,
can only profile specific types of activity, or
rely on kernel instrumentation. Many other new
techniques have been introduced in this field such
as the concept of latency[2] and dynamic aspect-
oriented methodologies[3]. We are introducing a
new profiler and memory-leaks detector, Aspect-
Trace, that performs dynamic program analysis.

II. OUR APPROACH

We propose an architecture for the profiler,
AspectTrace, based on solely new approach,
Aspect-Oriented approach. Aspect-Oriented pro-
gramming includes the programming techniques
which increases the modularity by allowing the
separation of concerns. It breaks down the pro-
gram logic into distinct parts. The crosscutting
expressions perform the grouping and encapsula-
tion of concerns in one place. Pointcuts describe
a set of join points by determining the condition
on which an aspect shall take effect. Thereby
each join point can either refer to a function, an
attribute, a type, a variable, or a point so that
this condition can be for instance the event of
reaching a designated code position. Depending
on the kind of pointcuts, they are evaluated either
at compile time or at runtime[4].

Aspect-Oriented programming is an APL. As-
pects have been written to have logging code
defined along with their position of execution.
The integration of any program code and aspects
is done through a process known as weaving. An
aspect-weaver reads the aspects and generates the
corresponding object-oriented code with the as-
pects weaved into it. The weaved aspects become
active whenever the join points get executed.
Any change in the functionality of a function
or module for which an aspect has been written
would not affect the functionality of the aspects
and vice-versa.

AspectTrace works on the same principle and
uses aspect-oriented programming as a primary
tool. When the target program is to be profiled,
the aspects are generated for it and are weaved
to it to generate a single C++ file, which is
then compiled using the aspect compiler. The
weaving of aspects and the compilation of the
generated code are the subsequent processes of
the same tool. The aspects are generated for each
function in the target program, performing the
pre-defined tasks such as displaying the virtual
memory allocation, memory leaks, the execution
time of the program and the function analysis of
the program.

A. Architecture

C Codes —1 ! Parser

2 [fn_name, argument of func

y ¥
[ey
4'|a.out
y
execution
{7 User land
4 /procffiles
]
Kernel land
Kernel
Modules

Fig. 1: AspectTrace Architecture

The architecture is divided into two parts, viz.,
user land and kernel land. The user land consists

of parser, aspects generator and aspects weaver.
The target code is parsed to extract the names of
the functions defined in the target program, and
these functions’ names along with their param-
eters are stored in a file. This file is then used
to generate aspects from the pre-defined aspect
generator. The generated aspects are then weaved
to the target code using the aspect weaver to
give a weaved file. The aspect weaver weaves the
aspect code to the main code. The weaver used for
the purpose is ag++. ag++ is an aspect compiler
which compiles and integrates both the aspect
code and target code. The weaved, compiled file
is then executed to perform the profiling.

In the kernel land, profiko module is loaded
in the linux kernel 2.6.32. The /proc filesystem
has been used as an interface between the user
land and the kernel land. Two /proc files are
created when the module is loaded into the ker-
nel: /proc/main and /proc/func. The former file
calls the module which is specific for the main()
function’s aspects and the later one deals with the
module for the user-defined functions’ aspects.
Whenever, the /proc file is written/modified, the
corresponding module becomes active and per-
forms the assigned tasks.

B. Software Details

The user land performs the functional analysis
and the memory-leak detection of the target code
whereas the kernel land extracts the information
about the virtual memory allocated to the pro-
gram.

The phenomenon of memory leaks and execu-
tion time has been implemented in the aspects
itself. The memory leaks’ joinpoints get invoked
whenever the dynamic memory allocation func-
tions, viz., malloc or calloc or realloc or free
are called. They calculate the amount of memory
allocated and memory freed for each function.
The details of the dynamic memory allocation:
the line number in the program at which the
memory allocation is called, the memory location
at which the memory is allocated in the virtual
memory and the size of the allocated memory
are stored in a file. This file is used to display
the memory leaks at the end of execution. The
execution time taken by the code and the aspects
are recorded separately by the aspect. Moreover,

c cod-eﬁlj

FLEX

-
=

W

v,

YACC

generateAspect.c

“_ Y.tah.h

aspectSlice.c

GCC

Fig. 2: Code Flow Graph

the execution time for each function is calculated
separately. This provides the execution overhead
of each function (excluding aspects overhead).
The loaded module traverses the process list
in the kernel using the task_struct struct defined
in linux/sched.h header file. The module uses
the process id, pid, obtained from /proc files, to
find the corresponding task_struct pointer. The
mm_struct struct pointer is then used to fetch
the memory details for the process. This struct
gives a pointer to struct vim_area_struct defined in
mm_types.h. The vm_area_struct contains all the
information about the virtual memory allocated
to the process. This struct gives all the required
details about the virtual memory block assigned
to the program, such as, the start and end address
of the block, file associated with the block and
the permission flags. Thereby, the loaded module
extracts the information about the amount of
memory allocated to various memory segments,
viz., text segment, data segment, heap and stack.

ITI. RESULT AND ANALYSIS

AspectTrace is a generic, kernel-level, dynamic
analyser which can be used to study any C
program behavior in detail. It provides various
information about the code profiled :

a) Functional Analysis : functions that are exe-
cuted, the call graph, execution time of each func-
tion, each function’s overhead for the program.
b) Memory Details : total virtual memory allo-
cated for the program, starting address of text
section, size of text section, starting address of
data section, size of data section, starting address
of heap and size of the total heap allocated,
starting address of stack, memory leaks and their
details (location, amount).

c) Other Details : process id, aspect overhead.
AspectTrace has much less runtime overhead. It
is accurate and efficient.

There exist many other profilers such as gcov,
gprof and valgrind which are widely used for
profiling. All of them provide the dynamic anal-
ysis of the program. A comparative study of
AspectTrace has been done with these profilers.

A. Output-wise Analysis

gcov provides the information about the fre-
quency of the execution of each line in the
code[5]. gprof provides information about the
frequency of the execution of the functions along
with their execution time as well as gives the
callgraph of functions[6]. valgrind uses its own

virtual machine to do the profiling and its mem-
check tool tells about the memory leaks and the
amount of heap allocated in the program[7]. The
outputs of these profilers for a matrix multipli-
cation program are provided in annexure. All the
codes have been executed on linux kernel 2.6.32
and Intel CORE 2 Duo Processor. The output
produced by AspectTrace is consistent with the
result produced by these profilers.

B. Approach-wise Analysis

gprof works on the sampling approach, i.e.,
it performs the periodical probing of the target
program’s program counter. The resulting time
values are thus a statistical approximation and not
accurate, whereas AspectTrace calculates the time
values at the entry and exit points of the functions,
thus it gives the accurate execution time of the
functions. The memcheck tool of the valgrind pro-
filer replaces the original memory allocation code
with its own virtual machine implementation. It
inserts an extra instrumentation code around all
the instructions. These result in the high execution
time of the program. On the other hand, the join
points corresponding to the memory check in
AspectTrace gets invoked only when the memory
allocation functions are invoked, resulting in the
significant reduced overhead of the profiler.

C. Time Analysis

TABLE I: Execution Time of Profilers (in sec.)

Gceov | Gprof | Valgrind | AspectTrace

61.5 60.9 479.4 61.8

The total time taken by the profilers to compile,
profile and execute the matrix multiplication pro-
gram is compared in Table I. In this program, two
1500x1500 matrices are randomly initialized and
then multiplied to give the product matrix. The
time taken by gcov, gprof and AspectTrace are
almost same. The information provided by gcov
and gprof is limited whereas AspectTrace pro-
vides vast information presenting various kinds of
details. Valgrind on the other hand, has the higher
profiling time due to the runtime instrumentation.
The time taken by AspectTrace is about 8 times
less than the time consumed by valgrind.

IV. CONCLUSION AND FUTURE WORK

The Aspect-Oriented approach is solely new.
It has strength to capture small details with ease
thus leading to fine-grained, smooth profiling,
with significantly low overhead. Exploring this
capability can lead to significant improvement
in the world of profiling. Our tool, AspectTrace
has much less runtime overhead. It is accurate,
efficient and provides vast information about the
program execution. This tool has high potential in
High Performance Computing. In future we can
even think, to extend AspectTrace profiler to pro-
file the Linux kernel. One can add more elements
of profiling to extract small things as per the
requisites and do fine-grained profiling. Fullfledge
AspectTrace can be developed including many
tools such as memory tools detecting : use of
uninitialized memory, reading/writing memory
after it has been freed, and reading/writing off
the end of malloc’d blocks.

V. ACKNOWLEDGEMENT

The authors would like to thank Dr. Anupam
Gupta, Project Officer, Indian Institute of Tech-
nology Rajasthan, India for initiating the idea on
this new approach in the field of profiling.

REFERENCES

[1] Raj Jain, ”Survey of Software Monitoring and Profiling
Tools”, Washington University, 2006 [Online]
http://www.cse.wustl.edu/~jain/cse567-
06/ftp/sw_monitors2/index.html

[2] Nikolai Joukov, Avishay traegar, Rakesh iyer, Charles
P. Wright and Erez Zadok, Operating System Profiling
via Latency Analysis, 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006).

[3] Yashishato Yanagisawa, “A Source Level Kernel
Profiler based on Dynamic Aspect-Orientation, Tokyo
Institute of Technology, 2005

[4] ”AspectC++ Language Reference” [Online]
Available at: http://www.aspectc.org

[5] ”gcov manual” [Online]
Available at: http://gcc.gnu.org/onlinedocs/gee-
4.5.2/gcc/Geov-Intro.html

[6] Jay Fenlason, "GNU gprof manual”, 1988
[7] >Valgrind User Manual” [Online]

Available at: http://valgrind.org/docs/manual/mc-
manual.html

VI. ANNEXURE

A. Outputs of different Profilers AspectTrace
Process id: 16575

Memory Design: NUMA

Gceov
1: 83:void calculate_matrix(int *matrixA,int rowA, VIRTUAL MEMORY INFO:
int colA,int *matrixB,int colB, int *matrixC) Start Code:0x8048000
- gt End Code:0x804b95¢
- gg int ij,k; Code size:14684
1501: 87: for(i=0;1 Ajd
; AR Start Data:0x804cef4
2251500: 89 for(j=0;j<colB;j++) End Data:0x804d064
- 90: { Data size:368
377250000: 91: for(k=0;k<colA;k++)
- 92: { Start Heap:0x8ed5000
375000000: 93: #matrixC+(i*colB)+k) += End Heap:0x8ef6000
*(marrixA+(i*colA)+k) * (*(matrixB+(k*colB)+j)); Heap size:135168
-t 94: }
- 95: } ;
- o6} Start Stack:0xbfbd8da0
= 97 Total virtual memory allocated:3002368
- 98: /display_matrix(matrixC, rowA, colB);
1: 99:}
CALLGRAPH :
Enters function: main()
Entered function: insert_matrix()
Gprof Total virtual memory allocated:30015488
Each sample counts as 0.01 seconds. Exits function: insert_matrix()
% cumulative self self wtal Total virtual memory allocated:30015488
time seconds seconds calls s/call s/call name Execution time of insert_matrix() : 0.081902
99.93 59.05 59.05 1 59.05 59.05 calculate_matrix - : - : : .
0.07 £9.09 0.04 5 002 0.02 insert matrix Execution time of insert_matrix() with aspects : 0.082260
Entered function: insert_matrix()
Total virtual memory allocated:30015488
. Exits function: insert_matrix()
Valgrlnd Total virtual memory allocated:30015488
==0103== HEAP SUMMARY: EXE?CI.[[?DI‘[li.m(? of i.l‘lSE?l‘l_maI.l‘i.X() : 0090835
==0103== in use at exit: 9,000,000 bytes in 1 blocks Execution time of insert_matrix() with aspects : 0.091060

==0103== total heap usage: 3 allocs, 2 frees, 27,000,000 bytes allocated i i
==9103== 9,000,000 bytes in 1 blocks are possibly lostin loss record 1 of 1~ Entered function: calculate_marix()

==9103== at 0x4024F20: malloc (vg_replace_malloc.c:236) Total virtual memory allocated:30015488

==9103== by 0x8048679: main Exits function: calculate_matrix()

==9103== Total virtual memory allocated:30015488

==0103== LEAK SUMMARY: Execution time of calculate_matrix() : 60.596458

==9103== definitely lost: 0 bytes in 0 blocks Execution time of calculate_matrix() with aspects : 60.596695
==9103== indirectly lost: 0 bytes in 0 blocks

==0103== possibly lost: 9,000,000 bytes in 1 blocks Exited Function : main()

==9103== still reachable: 0 bytes in 0 blocks Execution time of main() : 60.772617

Execution time with aspects : 60.773273

Aspects Overhead : 0.000656
Percentage Overhead : 0.001079%

FUNCTION ANALYSIS :

insert_matrix 0.081902 0.134776%
insert_matrix 0.090835 0.149475%
calculate_matrix 60.596458 99.715749%

HEAP ALLOCATED FOR PROGRAM : 27000000 bytes

MEMORY LEAKS :
9000000 bytes

Location of memory leaks :
0xb5edd008 9000000 29

	Introduction
	Our Approach
	Architecture
	Software Details

	Result and Analysis
	Output-wise Analysis
	Approach-wise Analysis
	Time Analysis

	Conclusion and Future Work
	Acknowledgement
	References
	Annexure
	Outputs of different Profilers

